

Pogramme Name: BCA (NEP)

Course Code: NBCA-201

 Faculty Name:

 Mr. Rohit Kapoor
 Assistant Professor, LPCPS-II-Sem Subject- Data Structure with C

Objectives

 To provide the knowledge of fundamental concepts of data structures using the c

programming language so that students should get to know that how we are

managing various kinds of data in the computer system and how it is accessed in a

proper way.

 Understand the use and working of the various data structures.

 Learn to be able to build own algorithms and pseudo codes for the various applications of the basic data

structures.

Introduction

 "Data" indicates information saved or delivered by a computer.

 Data also occurs in order kinds.

 There is data in order types as well, though.

 Data may take many forms: handwritten notes including numbers and

words, digital files held in memory of computers and other electronic devices,

or even information held in a person's brain.

 This data became an integral part of everyone's daily lives as the globe

began to modernise, and different implementations enabled people to store it

differently.

F

• Data is a collection of facts and figures or a set of values or values

of a specific format that refers to a single set of item values.

• The data items are then classified into sub-items, which is the

group of items that are not known as the simple primary form of
the item.

• Data Structure is a branch of Computer Science.

• The study of data structure allows us to understand the
organization of data and the management of the data flow in order
to increase the efficiency of any process or program.

• Data Structure is a particular way of storing and organizing data
in the memory of the computer so that these data can easily be
retrieved and efficiently utilized in the future when required.

• The data can be managed in various ways, like the logical or
mathematical model for a specific organization of data is known
as a data structure.

Scope

The scope of a particular data model depends on two factors:

1. First, it must be loaded enough into the structure to reflect the
definite correlation of the data with a real-world object.

2. Second, the formation should be so straightforward that one can
adapt to process the data efficiently whenever necessary.

• Some examples of Data Structures are Arrays, Linked Lists, Stack,
Queue, Trees, etc. Data Structures are widely used in almost every
aspect of Computer Science, i.e., Compiler Design, Operating
Systems, Graphics, Artificial Intelligence, and many more.

Basic Terminologies related to Data Structures

• Data Structures are the building blocks of any software or program.

• The following are some fundamental terminologies used whenever the

data structures are involved:
1. Data: We can define data as an elementary value or a collection of values. For

example, the Employee's name and ID are the data related to the Employee.
2. Data Items: A Single unit of value is known as Data Item.
3. Group Items: Data Items that have subordinate data items are known as Group

Items. For example, an employee's name can have a first, middle, and last name.
4. Elementary Items: Data Items that are unable to divide into sub-items are

known as Elementary Items. For example, the ID of an Employee.
5. Entity and Attribute: A class of certain objects is represented by an Entity. It

consists of different Attributes. Each Attribute symbolizes the specific property
of that Entity. For example,

Classification of Data Structures

Primitive Data Structures

1. Primitive Data Structures are the data structures consisting of the

numbers and the characters that come in-built into programs.

2. These data structures can be manipulated or operated directly by
machine-level instructions.

3. Basic data types like Integer, Float, Character,
and Boolean come under the Primitive Data Structures.

4. These data types are also called Simple data types, as they
contain characters that can't be divided further

Non-Primitive Data Structures

1. Non-Primitive Data Structures are those data structures derived from
Primitive Data Structures.

2. These data structures can't be manipulated or operated directly by machine-
level instructions.

3. The focus of these data structures is on forming a set of data elements that is
either homogeneous (same data type) or heterogeneous (different data
types).

4. Based on the structure and arrangement of data, we can divide these data
structures into two sub-categories -

1. Linear Data Structures

2. Non-Linear Data Structures

Linear Data Structures

• A data structure that preserves a linear connection among its data
elements is known as a Linear Data Structure.

• The arrangement of the data is done linearly, where each element
consists of the successors and predecessors except the first and
the last data element.

• However, it is not necessarily true in the case of memory, as the
arrangement may not be sequential.

• Based on memory allocation, the Linear Data Structures are
further classified into two types:

Linear Data Structures

• Static Data Structures: The data structures having a fixed size are known as
Static Data Structures. The memory for these data structures is allocated at
the compiler time, and their size cannot be changed by the user after being
compiled; however data in it can alerted.

The Array is the best example of the Static Data Structure as they have a

fixed size, and its data can be modified later.

• Dynamic Data Structures: The data structures having a dynamic size are
known as Dynamic Data Structures. The memory of these data structures is
allocated at the run time, and their size varies during the run time of the
code. Moreover, the user can change the size as well as the data elements
stored in these data structures at the run time of the code.

Linked Lists, Stacks, and Queues are common examples of

dynamic data structures

Types of Linear Data Structures

Arrays
• An Array is a data structure used to collect multiple data elements of

the same data type into one variable.

• An Array is a list of elements where each element has a unique place in

the list.
• The data elements of the array share the same variable name; however, each

carries a different index number called a subscript.
• We can access any data element from the list with the help of its location in the

list.
• Thus, the key feature of the arrays to understand is that the data is stored in

contiguous memory locations, making it possible for the users to traverse
through the data elements of the array using their respective indexes.

Arrays can be classified into different types:

1. One-Dimensional Array: An Array with only one row of data elements is
known as a One-Dimensional Array. It is stored in ascending storage location.

2. Two-Dimensional Array: An Array consisting of multiple rows and columns

of data elements is called a Two-Dimensional Array. It is also known as a
Matrix.

3. Multidimensional Array: We can define Multidimensional Array as an Array

of Arrays. Multidimensional Arrays are not bounded to two indices or two
dimensions as they can include as many indices are per the need.

Linked Lists

• A Linked List is another example of a linear data structure used to
store a collection of data elements dynamically.

• Data elements in this data structure are represented by the Nodes,
connected using links or pointers.

• Each node contains two fields, the information field consists of the
actual data, and the pointer field consists of the address of the
subsequent nodes in the list.

• The pointer of the last node of the linked list consists of a null pointer,
as it points to nothing. Unlike the Arrays, the user can dynamically
adjust the size of a Linked List as per the requirements.

Linked Lists can be classified into different types:

1. Singly Linked List: A Singly Linked List is the most common type of

Linked List. Each node has data and a pointer field containing an
address to the next node.

2. Doubly Linked List: A Doubly Linked List consists of an information
field and two pointer fields. The information field contains the data. The
first pointer field contains an address of the previous node, whereas
another pointer field contains a reference to the next node. Thus, we
can go in both directions (backward as well as forward).

3. Circular Linked List: The Circular Linked List is similar to the Singly
Linked List. The only key difference is that the last node contains the
address of the first node, forming a circular loop in the Circular Linked
List.

Some Applications of Linked Lists:

1. The Linked Lists help us implement stacks, queues, binary trees, and
graphs of predefined size.

2. We can also implement Operating System's function for dynamic
memory management.

3. Linked Lists also allow polynomial implementation for mathematical
operations.

4. We can use Circular Linked List to implement Operating Systems or
application functions that Round Robin execution of tasks.

5. Circular Linked List is also helpful in a Slide Show where a user
requires to go back to the first slide after the last slide is presented.

6. Doubly Linked List is utilized to implement forward and backward
buttons in a browser to move forward and backward in the opened
pages of a website.

Stacks

• A Stack is a Linear Data Structure that follows
the LIFO (Last In, First Out) principle that allows operations
like insertion and deletion from one end of the Stack, i.e.,
Top.

• Stacks can be implemented with the help of contiguous
memory, an Array, and non-contiguous memory, a Linked
List.

• Real-life examples of Stacks are piles of books, a deck of
cards, piles of money, and many more

• The insertion and removal of new books from the top of the Stack. It

implies that the insertion and deletion in the Stack can be done only
from the top of the Stack. We can access only the Stack's tops at any

given time.

The primary operations in the Stack are as follows:

1. Push: Operation to insert a new element in

the Stack is termed as Push Operation.

2. Pop: Operation to remove or delete elements
from the Stack is termed as Pop Operation.

Some Applications of Stacks:
1. The Stack is used as a Temporary Storage Structure for recursive operations.

2. Stack is also utilized as Auxiliary Storage Structure for function calls, nested
operations, and deferred/postponed functions.

3. We can manage function calls using Stacks.

4. Stacks are also utilized to evaluate the arithmetic expressions in different
programming languages.

5. Stacks are also helpful in converting infix expressions to postfix expressions.

6. Stacks allow us to check the expression's syntax in the programming environment.

7. We can match parenthesis using Stacks.

8. Stacks can be used to reverse a String.

9. Stacks are helpful in solving problems based on backtracking.

10. We can use Stacks in depth-first search in graph and tree traversal.

11. Stacks are also used in Operating System functions.

12. Stacks are also used in UNDO and REDO functions in an edit.

Queues

• A Queue is a linear data structure similar to a
Stack with some limitations on the insertion and
deletion of the elements.

• The insertion of an element in a Queue is done at
one end, and the removal is done at another or
opposite end.

• Thus, we can conclude that the Queue data
structure follows FIFO (First In, First Out)
principle to manipulate the data elements.

• Implementation of Queues can be done using
Arrays, Linked Lists, or Stacks. Some real-life
examples of Queues are a line at the ticket
counter, an escalator, a car wash, and many more.

The following are the
primary operations
of the Queue:

1. Enqueue: The insertion or Addition of some data
elements to the Queue is called Enqueue. The element
insertion is always done with the help of the rear
pointer.

2. Dequeue: Deleting or removing data elements from
the Queue is termed Dequeue. The deletion of the
element is always done with the help of the front
pointer.

Some Applications of Queues:

1. Queues are generally used in the breadth search operation in Graphs.
2. Queues are also used in Job Scheduler Operations of Operating Systems,

like a keyboard buffer queue to store the keys pressed by users and a
print buffer queue to store the documents printed by the printer.

3. Queues are responsible for CPU scheduling, Job scheduling, and Disk
Scheduling.

4. Priority Queues are utilized in file-downloading operations in a
browser.

5. Queues are also used to transfer data between peripheral devices and
the CPU.

6. Queues are also responsible for handling interrupts generated by the
User Applications for the CPU.

Non-Linear Data Structures

• Non-Linear Data Structures are data structures where the data

elements are not arranged in sequential order.

• Here, the insertion and removal of data are not feasible in a linear
manner.

• There exists a hierarchical relationship between the individual
data items.

Types of Non-Linear Data Structures

1. Trees

• A Tree is a Non-Linear Data Structure and a hierarchy containing a
collection of nodes such that each node of the tree stores a value
and a list of references to other nodes (the "children").

• The Tree data structure is a specialized method to arrange and
collect data in the computer to be utilized more effectively. It
contains a central node, structural nodes, and sub-nodes
connected via edges. We can also say that the tree data structure
consists of roots, branches, and leaves connected.

Trees can be classified into different types:

1. Binary Tree: A Tree data structure where each parent node can
have at most two children is termed a Binary Tree.

2. Binary Search Tree: A Binary Search Tree is a Tree data structure
where we can easily maintain a sorted list of numbers.

3. AVL Tree: An AVL Tree is a self-balancing Binary Search Tree
where each node maintains extra information known as a Balance
Factor whose value is either -1, 0, or +1.

4.B-Tree: A B-Tree is a special type of self-balancing Binary Search
Tree where each node consists of multiple keys and can have more
than two children.

Some Applications of Trees:
1. Trees implement hierarchical structures in computer systems like directories and

file systems.

2. Trees are also used to implement the navigation structure of a website.

3. We can generate code like Huffman's code using Trees.

4. Trees are also helpful in decision-making in Gaming applications.

5. Trees are responsible for implementing priority queues for priority-based OS
scheduling functions.

6. Trees are also responsible for parsing expressions and statements in the compilers
of different programming languages.

7. We can use Trees to store data keys for indexing for Database Management System
(DBMS).

8. Spanning Trees allows us to route decisions in Computer and Communications
Networks.

9. Trees are also used in the path-finding algorithm implemented in Artificial
Intelligence (AI), Robotics, and Video Games Applications.

Graphs

• A Graph is another example of a Non-Linear Data Structure
comprising a finite number of nodes or vertices and the edges
connecting them.

• The Graphs are utilized to address problems of the real world in
which it denotes the problem area as a network such as social
networks, circuit networks, and telephone networks.

• For instance, the nodes or vertices of a Graph can represent a
single user in a telephone network, while the edges represent the
link between them via telephone.

• The Graph data structure, G is considered a
mathematical structure comprised of a set
of vertices, V and a set of edges, E as shown
below:

• G = (V,E)

Some Applications of Graphs:

1. Graphs help us represent routes and networks in transportation, travel, and
communication applications.

2. Graphs are used to display routes in GPS.
3. Graphs also help us represent the interconnections in social networks and

other network-based applications.
4. Graphs are utilized in mapping applications.

5. Graphs are responsible for the representation of user preference in e-
commerce applications.

6. Graphs are also used in Utility networks in order to identify the problems
posed to local or municipal corporations.

7. Graphs also help to manage the utilization and availability of resources in an
organization.

8. Graphs are also used to make document link maps of the websites in order to
display the connectivity between the pages through hyperlinks.

9. Graphs are also used in robotic motions and neural networks.

Basic Operations of Data Structures
1. Traversal: Traversing a data structure means accessing each data element

exactly once so it can be administered.
2. Search: Search is another data structure operation which means to find the

location of one or more data elements that meet certain constraints. Such a
data element may or may not be present in the given set of data elements. For
example, we can use the search operation to find the names of all the
employees who have the experience of more than 5 years.

3. Insertion: Insertion means inserting or adding new data elements to the
collection.

4. Deletion: Deletion means to remove or delete a specific data element from
the given list of data elements.

5. Sorting: Sorting means to arrange the data elements in either Ascending or
Descending order depending on the type of application. For example, we can
use the sorting operation to arrange the names of employees in a department
in alphabetical order or estimate the top three performers of the month by
arranging the performance of the employees in descending order and
extracting the details of the top three.

Basic Operations of Data Structures

1. Merge: Merge means to combine data elements of two sorted lists in order to
form a single list of sorted data elements.

2. Create: Create is an operation used to reserve memory for the data elements
of the program. We can perform this operation using a declaration statement.
The creation of data structure can take place either during the following:

1. Compile-time ---------- --2.Run-time
For example, the malloc() function is used in C Language to create data structure.

3. Selection: Selection means selecting a particular data from the available
data. We can select any particular data by specifying conditions inside the
loop.

4. Update: The Update operation allows us to update or modify the data in the
data structure. We can also update any particular data by specifying some
conditions inside the loop, like the Selection operation.

5. Splitting: The Splitting operation allows us to divide data into various
subparts decreasing the overall process completion time.

Abstract Data Type

• As per the National Institute of Standards and Technology (NIST), a data structure is an

arrangement of information, generally in the memory, for better algorithm efficiency. Data
Structures include linked lists, stacks, queues, trees, and dictionaries.

• From the definition mentioned above, we can conclude that the operations in data structure include:

1. A high level of abstractions like addition or deletion of an item from a list.

2. Searching and sorting an item in a list.

3. Accessing the highest priority item in a list.

Whenever the data structure does such operations, it is known as an Abstract Data Type (ADT).

Abstract Data Type

• We can define it as a set of data elements along with the operations on the data.

• The term "abstract" refers to the fact that the data and the fundamental operations defined on

it are being studied independently of their implementation.

• It includes what we can do with the data, not how we can do it.

• An ADI implementation contains a storage structure in order to store the data elements and

algorithms for fundamental operation.

• All the data structures, like an array, linked list, queue, stack, etc., are examples of ADT.

Some Applications of Data Structures
1. Data Structures help in the organization of data in a computer's memory.

2. Data Structures also help in representing the information in databases.

3. Data Structures allows the implementation of algorithms to search through data (For example, search
engine).

4. We can use the Data Structures to implement the algorithms to manipulate data (For example, word
processors).

5. We can also implement the algorithms to analyse data using Data Structures (For example, data
miners).

6. Data Structures support algorithms to generate the data (For example, a random number generator).

7. Data Structures also support algorithms to compress and decompress the data (For example, a zip
utility).

8. We can also use Data Structures to implement algorithms to encrypt and decrypt the data (For example,
a security system).

9. With the help of Data Structures, we can build software that can manage files and directories (For
example, a file manager).

10. We can also develop software that can render graphics using Data Structures. (For example, a web
browser or 3D rendering software).

DS Algorithm
What is an Algorithm?

• An algorithm is a process or a set of rules required to perform

calculations or some other problem-solving operations especially
by a computer.

• The formal definition of an algorithm is that it contains the finite
set of instructions which are being carried in a specific order to
perform the specific task.

• It is not the complete program or code; it is just a solution (logic)
of a problem, which can be represented either as an informal
description using a Flowchart or Pseudocode

Types of Algorithms

Search Algorithm

• On each day, we search for something in our day to day life.
Similarly, with the case of computer, huge data is stored in a
computer that whenever the user asks for any data then the
computer searches for that data in the memory and provides that
data to the user.

There are mainly two techniques available to search the data in an
array:

• Linear search

• Binary search

Linear Search

• Linear search is a very simple algorithm that starts searching for
an element or a value from the beginning of an array until the
required element is not found.

• It compares the element to be searched with all the elements in an
array, if the match is found, then it returns the index of the element
else it returns -1.

• This algorithm can be implemented on the unsorted list.

Linear

Search in
Data

Structure

Binary Search

• A Binary algorithm is the simplest algorithm that searches the
element very quickly.

• It is used to search the element from the sorted list.

• The elements must be stored in sequential order or the sorted
manner to implement the binary algorithm.

• Binary search cannot be implemented if the elements are stored in
a random manner.

• It is used to find the middle element of the list.

Binary

Search in
Data

Structure

What is a Stack?

• A Stack is a linear data structure that follows the LIFO (Last-In-

First-Out) principle.

• Stack has one end, whereas the Queue has two ends (front and
rear).

• It contains only one pointer top pointer pointing to the topmost
element of the stack.

• Whenever an element is added in the stack, it is added on the top
of the stack, and the element can be deleted only from the stack. In
other words, a stack can be defined as a container in which
insertion and deletion can be done from the one end known as
the top of the stack.

Working of Stack

• Stack works on the LIFO pattern. As
we can observe in the below figure
there are five memory blocks in the
stack; therefore, the size of the stack
is 5.

• Suppose we want to store the
elements in a stack and let's assume
that stack is empty. We have taken the
stack of size 5 as shown below in
which we are pushing the elements
one by one until the stack becomes
full.

Working of Stack

• When we perform the delete

operation on the stack, there is only
one way for entry and exit as the
other end is closed. It follows the
LIFO pattern, which means that the
value entered first will be removed
last. In the above case, the value 5 is
entered first, so it will be removed
only after the deletion of all the other
elements.

Standard Stack Operations

• push(): When we insert an element in a stack then the operation is
known as a push. If the stack is full then the overflow condition occurs.

• pop(): When we delete an element from the stack, the operation is
known as a pop. If the stack is empty means that no element exists in
the stack, this state is known as an underflow state.

• isEmpty(): It determines whether the stack is empty or not.

• isFull(): It determines whether the stack is full or not.'

• peek(): It returns the element at the given position.

• count(): It returns the total number of elements available in a stack.

• change(): It changes the element at the given position.

• display(): It prints all the elements available in the stack.

PUSH operation

• Before inserting an element in a stack, we check

whether the stack is full.

• If we try to insert the element in a stack, and the stack
is full, then the overflow condition occurs.

• When we initialize a stack, we set the value of top as -
1 to check that the stack is empty.

• When the new element is pushed in a stack, first, the
value of the top gets incremented, i.e., top=top+1, and
the element will be placed at the new position of
the top.

• The elements will be inserted until we reach
the max size of the stack.

The steps involved in the POP operation is
given below:

• Before deleting the element from the stack,
we check whether the stack is empty.

• If we try to delete the element from the
empty stack, then the underflow condition
occurs.

• If the stack is not empty, we first access the
element which is pointed by the top

• Once the pop operation is performed, the
top is decremented by 1, i.e., top=top-1.

Bubble sort Algorithm

• Bubble sort works on the repeatedly swapping of adjacent

elements until they are not in the intended order.

• It is called bubble sort because the movement of array elements is
just like the movement of air bubbles in the water.
• Bubbles in water rise up to the surface; similarly, the array elements in

bubble sort move to the end in each iteration.

• Although it is simple to use, it is primarily used as an educational
tool because the performance of bubble sort is poor in the real
world. It is not suitable for large data sets.

• The average and worst-case complexity of Bubble sort
is O(n2), where n is a number of items.

Algorithm

In the algorithm given below, suppose arr is an array of n elements. The
assumed swap function in the algorithm will swap the values of given array
elements.

begin BubbleSort(arr)

for all array elements

if arr[i] > arr[i+1]

swap(arr[i], arr[i+1])
end if

end for
return arr

end BubbleSort

Bubble sort complexity

Implementation
of Bubble sort

Insertion Sort Algorithm

• Insertion sort works similar to the sorting of playing cards in hands.

• It is assumed that the first card is already sorted in the card game, and
then we select an unsorted card.

• If the selected unsorted card is greater than the first card, it will be
placed at the right side; otherwise, it will be placed at the left side.
Similarly, all unsorted cards are taken and put in their exact place.

• The same approach is applied in insertion sort.

• The idea behind the insertion sort is that first take one element, iterate
it through the sorted array. Although it is simple to use, it is not
appropriate for large data sets as the time complexity of insertion
sort in the average case and worst case is O(n2), where n is the
number of items.

• Insertion sort is less efficient than the other sorting algorithms like
heap sort, quick sort, merge sort, etc.

Insertion sort has various advantages such as –

• Simple implementation

• Efficient for small data sets

• Adaptive, i.e., it is appropriate for data sets that are already
substantially sorted.

Algorithm

The simple steps of achieving the insertion sort are listed as follows
-

• Step 1 - If the element is the first element, assume that it is already
sorted. Return 1.

• Step2 - Pick the next element, and store it separately in a key.

• Step3 - Now, compare the key with all elements in the sorted
array.

• Step 4 - If the element in the sorted array is smaller than the
current element, then move to the next element. Else, shift greater
elements in the array towards the right.

• Step 5 - Insert the value.

• Step 6 - Repeat until the array is sorted.

For j= 2 to A.length

Key= A[j]

//Insert A[j] into the sorted sequence A[1…… j-1]

i=j-1

While i>0 && a[i]>key

A[i+1] = A[i]

i=i-1

A[i+1]=key

Time

Complexity

Case Time Complexity

• Best Case Complexity - It occurs when there is no sorting

required, i.e. the array is already sorted. The best-case time
complexity of insertion sort is O(n).

• Average Case Complexity - It occurs when the array elements are
in jumbled order that is not properly ascending and not properly
descending. The average case time complexity of insertion sort
is O(n2).

• Worst Case Complexity - It occurs when the array elements are
required to be sorted in reverse order. That means suppose you
have to sort the array elements in ascending order, but its
elements are in descending order. The worst-case time complexity
of insertion sort is O(n2).

Array implementation of Stack

• In array implementation, the stack is formed by using the array.

• All the operations regarding the stack are performed using arrays.

Adding an element onto the stack (push operation)

• Adding an element into the top of the stack is referred to as push
operation.

• Push operation involves following two steps:-
1. Increment the variable Top so that it can now refer to the next memory

location.

2. Add element at the position of incremented top. This is referred to as
adding new element at the top of the stack.

• Stack is overflown when we try to insert an element into a
completely filled stack therefore, our main function must always
avoid stack overflow condition.

Algorithm:

begin

if top = n then stack full

top = top + 1

stack (top) : = item;

end

Implementation of push algorithm in C language

void push (int val,int n) //n is size of the stack
{

if (top == n)
printf("\n Overflow");
else
{
top = top +1;
stack[top] = val;
}

}

Deletion of an element from a stack (Pop operation)

• Deletion of an element from the top of the stack is called pop

operation.

• The value of the variable top will be incremented by 1 whenever
an item is deleted from the stack.

• The top most element of the stack is stored in an another variable
and then the top is decremented by 1.

• The operation returns the deleted value that was stored in
another variable as the result.

• The underflow condition occurs when we try to delete an element
from an already empty stack.

Algorithm :

begin

if top = 0 then stack empty;

item := stack(top);

top = top - 1;

end;

Implementation of POP algorithm using C language

int pop ()

{

if(top == -1)

{

printf("Underflow");

return 0;

}

else

{

return stack[top - -];

}

}

C program
#include <stdio.h>

int stack[100],i,j,choice=0,n,top=-1;

void push();

void pop();

void show();

void main ()

{

printf("Enter the number of elements in the stack ");

scanf("%d",&n);

printf("*********Stack operations using array*********");

printf("\n -- \n");

while(choice != 4)

{

printf("Chose one from the below options...\n");

printf("\n1.Push\n2.Pop\n3.Show\n4.Exit");

printf("\n Enter your choice \n");

scanf("%d",&choice);

switch(choice)

{

case 1:

{

push();

break;

}

case 2:

{

pop();

break;

}

case 3:

{

show();

break;

}

case 4:

{

}

default:

{

}

printf("Exiting ");

break;

printf("Please Enter valid choice ");

};

}

}

void push ()

{
int val;
if (top == n)
printf("\n Overflow");
else
{

printf("Enter the value?");
scanf("%d",&val);
top = top +1;
stack[top] = val;

}
}

void pop ()

{

if(top == -1)

printf("Underflow");

else

top = top -1;

}

void show()

{

for (i=top;i>=0;i--)

{

printf("%d\n",stack[i]);

}

if(top == -1)

{

printf("Stack is empty");

}

}

Linked list

• Linked list is a linear data structure that includes a series of

connected nodes.

• Linked list can be defined as the nodes that are randomly stored
in the memory.

• A node in the linked list contains two parts, i.e., first is the data
part and second is the address part.

• The last node of the list contains a pointer to the null.

• After array, linked list is the second most used data structure. In a
linked list, every link contains a connection to another link.

Representation of a Linked list

•

Representation of a Linked list

• We have been using array data structure to organize the group of

elements that are to be stored individually in the memory.

• However, Array has several advantages and disadvantages that
must be known to decide the data structure that will be used
throughout the program.

Why use linked list over array?

• Linked list is a data structure that overcomes the limitations of arrays.
Let's first see some of the limitations of arrays -
• The size of the array must be known in advance before using it in the program.

• Increasing the size of the array is a time taking process. It is almost impossible to
expand the size of the array at run time.

• All the elements in the array need to be contiguously stored in the memory.
Inserting an element in the array needs shifting of all its predecessors.

• Linked list is useful because -
• It allocates the memory dynamically. All the nodes of the linked list are non-

contiguously stored in the memory and linked together with the help of pointers.

• In linked list, size is no longer a problem since we do not need to define its size at
the time of declaration. List grows as per the program's demand and limited to
the available memory space.

How to declare a linked list?

• It is simple to declare an array, as it is of single type, while the

declaration of linked list is a bit more typical than array.

• Linked list contains two parts, and both are of different types, i.e.,
one is the simple variable, while another is the pointer variable.

• We can declare the linked list by using the user-defined data
type structure.

The declaration of linked list is given as follows -

struct node

{

int data;

struct node *next;

} We have defined a structure named as node that contains two
variables, one is data that is of integer type, and another one
is next that is a pointer which contains the address of next node.

Types of Linked list

• Singly-linked list - Singly linked list can be defined as the

collection of an ordered set of elements. A node in the singly linked
list consists of two parts: data part and link part. Data part of the
node stores actual information that is to be represented by the
node, while the link part of the node stores the address of its
immediate successor.

• Doubly linked list - Doubly linked list is a complex type of linked
list in which a node contains a pointer to the previous as well as
the next node in the sequence. Therefore, in a doubly-linked list, a
node consists of three parts: node data, pointer to the next node in
sequence (next pointer), and pointer to the previous node
(previous pointer).

Types of Linked list

• Circular singly linked list - In a circular singly linked list, the last
node of the list contains a pointer to the first node of the list. We
can have circular singly linked list as well as circular doubly linked
list.

• Circular doubly linked list - Circular doubly linked list is a more
complex type of data structure in which a node contains pointers
to its previous node as well as the next node. Circular doubly
linked list doesn't contain NULL in any of the nodes. The last node
of the list contains the address of the first node of the list. The first
node of the list also contains the address of the last node in its
previous pointer.

Comparison Between
Advantages of Linked list

• Dynamic data structure - The size of the linked

list may vary according to the requirements.
Linked list does not have a fixed size.

• Insertion and deletion - Unlike arrays, insertion,
and deletion in linked list is easier. Array elements
are stored in the consecutive location, whereas the
elements in the linked list are stored at a random
location. To insert or delete an element in an array,
we have to shift the elements for creating the
space. Whereas, in linked list, instead of shifting,
we just have to update the address of the pointer
of the node.

• Memory efficient - The size of a linked list can
grow or shrink according to the requirements, so
memory consumption in linked list is efficient.

• Implementation - We can implement both stacks
and queues using linked list.

Disadvantages of Linked list

• Memory usage - In linked list, node occupies
more memory than array. Each node of the
linked list occupies two types of variables, i.e.,
one is a simple variable, and another one is the
pointer variable.

• Traversal - Traversal is not easy in the linked
list. If we have to access an element in the linked
list, we cannot access it randomly, while in case
of array we can randomly access it by index. For
example, if we want to access the 3rd node, then
we need to traverse all the nodes before it. So,
the time required to access a particular node is
large.

• Reverse traversing - Backtracking or reverse
traversing is difficult in a linked list. In a doubly-
linked list, it is easier but requires more memory
to store the back pointer.

Applications of Linked list

• With the help of a linked list, the polynomials can be represented as well as
we can perform the operations on the polynomial.

• A linked list can be used to represent the sparse matrix.

• The various operations like student's details, employee's details, or product
details can be implemented using the linked list as the linked list uses the
structure data type that can hold different data types.

• Using linked list, we can implement stack, queue, tree, and other various data
structures.

• The graph is a collection of edges and vertices, and the graph can be
represented as an adjacency matrix and adjacency list. If we want to
represent the graph as an adjacency matrix, then it can be implemented as an
array. If we want to represent the graph as an adjacency list, then it can be
implemented as a linked list.

• A linked list can be used to implement dynamic memory allocation. The
dynamic memory allocation is the memory allocation done at the run-time.

Operations performed on Linked list

• Insertion - This operation is performed to add an element into the

list.

• Deletion - It is performed to delete an operation from the list.

• Display - It is performed to display the elements of the list.

• Search - It is performed to search an element from the list using
the given key.

Types of Linked List

• Before knowing about the types of a linked list, we should know

what is linked list.

The following are the types of linked list:

• Singly Linked list

• Doubly Linked list

• Circular Linked list

• Doubly Circular Linked list

Singly Linked list

• It is the commonly used linked list in programs. If we are talking
about the linked list, it means it is a singly linked list.

• The singly linked list is a data structure that contains two parts,
i.e., one is the data part, and the other one is the address part,
which contains the address of the next or the successor node.

• The address part in a node is also known as a pointer.

• Suppose we have three nodes, and the addresses of these three
nodes are 100, 200 and 300 respectively.

• Three different nodes having address 100, 200 and 300 respectively.
The first node contains the address of the next node, i.e., 200, the
second node contains the address of the last node, i.e., 300, and the
third node contains the NULL value in its address part as it does not
point to any node.

• The pointer that holds the address of the initial node is known as
a head pointer.

• The linked list, which is shown in the above diagram, is known as a
singly linked list as it contains only a single link. In this list, only
forward traversal is possible; we cannot traverse in the backward
direction as it has only one link in the list.

In the above representation, we have defined a
user-defined structure named a node containing
two members, the first one is data of integer type,
and the other one is the pointer (next) of the node
type.

• The doubly linked list contains two pointers. We can define the

doubly linked list as a linear data structure with three parts: the
data part and the other two address part.

• In other words, a doubly linked list is a list that has three parts in a
single node, includes one data part, a pointer to its previous node,
and a pointer to the next node.

• Suppose we have three nodes, and the address of these nodes are
100, 200 and 300, respectively.

• The representation of these nodes in a doubly-linked list is shown

below:

• As we can observe in the above figure, the node in a doubly-linked

list has two address parts; one part stores the address of the
next while the other part of the node stores the previous node's
address. The initial node in the doubly linked list has
the NULL value in the address part, which provides the address of
the previous node.

Representation of the node in a doubly
linked list

struct node

{

int data;

struct node *next;

struct node *prev;

}

• In the above representation, we have defined a user-defined

structure named a node with three members, one is data of
integer type, and the other two are the pointers, i.e., next and
prev of the node type.

• The next pointer variable holds the address of the next node, and
the prev pointer holds the address of the previous node.

• The type of both the pointers, i.e., next and prev is struct node as
both the pointers are storing the address of the node of the struct
node type.

Circular linked list

• A circular linked list is a variation of a singly linked list.

• The only difference between the singly linked list and a circular
linked list is that the last node does not point to any node in a
singly linked list, so its link part contains a NULL value.

• On the other hand, the circular linked list is a list in which the last
node connects to the first node, so the link part of the last node
holds the first node's address.

• The circular linked list has no starting and ending node. We can
traverse in any direction, i.e., either backward or forward.

A circular linked list is a sequence of elements in which each node has a link to

the next node, and the last node is having a link to the first node

Doubly Circular linked list

• The representation of the doubly circular linked list in which the last node is attached
to the first node and thus creates a circle.

• It is a doubly linked list also because each node holds the address of the previous node
also.

• The main difference between the doubly linked list and doubly circular linked list is
that the doubly circular linked list does not contain the NULL value in the previous
field of the node.

• As the doubly circular linked contains three parts, i.e., two address parts and one data
part so its representation is similar to the doubly linked list.

•

Linked List •

•

Linked List can be defined as collection of objects called nodes that
are randomly stored in the memory.

A node contains two fields i.e. data stored at that particular address
and the pointer which contains the address of the next node in the
memory.

The last node of the list contains pointer to the null.

Uses of Linked List

• The list is not required to be contiguously present in the memory.

The node can reside any where in the memory and linked together
to make a list.

• This achieves optimized utilization of space.

• list size is limited to the memory size and doesn't need to be
declared in advance.

• Empty node can not be present in the linked list.

• We can store values of primitive types or objects in the singly
linked list.

Why use linked list over array?

• Till now, we were using array data structure to organize the group of
elements that are to be stored individually in the memory.

• However, Array has several advantages and disadvantages which must
be known in order to decide the data structure which will be used
throughout the program.

• Array contains following limitations:
1. The size of array must be known in advance before using it in the

program.
2. Increasing size of the array is a time taking process. It is almost

impossible to expand the size of the array at run time.
3. All the elements in the array need to be contiguously stored in the

memory. Inserting any element in the array needs shifting of all its
predecessors.

Why use linked list over array?

• Linked list is the data structure which can overcome all the

limitations of an array. Using linked list is useful because,

1. It allocates the memory dynamically. All the nodes of linked list
are non-contiguously stored in the memory and linked together
with the help of pointers.

2. Sizing is no longer a problem since we do not need to define its
size at the time of declaration. List grows as per the program's
demand and limited to the available memory space.

Singly linked list or One way chain

• Singly linked list can be defined as the collection of ordered set of
elements.

• The number of elements may vary according to need of the
program. A node in the singly linked list consist of two parts: data
part and link part.

• Data part of the node stores actual information that is to be
represented by the node while the link part of the node stores the
address of its immediate successor.

Singly linked list or One way chain

• One way chain or singly linked list can be traversed only in one
direction. In other words, we can say that each node contains only
next pointer, therefore we can not traverse the list in the reverse
direction.

• Consider an example where the marks obtained by the student in
three subjects are stored in a linked list as shown in the figure.

• The data part of every node contains the marks obtained by the

student in the different subject.

• The last node in the list is identified by the null pointer which is
present in the address part of the last node.

• We can have as many elements we require, in the data part of the
list.

Node Creation

Insertion

	Scope
	The scope of a particular data model depends on two factors:
	adapt to process the data efficiently whenever necessary.
	Basic Terminologies related to Data Structures

	Primitive Data Structures
	Non-Primitive Data Structures
	Linear Data Structures
	Linear Data Structures (1)
	Types of Linear Data Structures
	Arrays can be classified into different types:
	Linked Lists
	Linked Lists can be classified into different types:

	Some Applications of Linked Lists:
	The primary operations in the Stack are as follows:

	Some Applications of Stacks:
	The following are the primary operations of the Queue:

	Some Applications of Queues:

	Non-Linear Data Structures
	Types of Non-Linear Data Structures
	1. Trees
	Trees can be classified into different types:

	Some Applications of Trees:
	Graphs
	Some Applications of Graphs:
	Basic Operations of Data Structures
	Basic Operations of Data Structures (1)
	Abstract Data Type
	Abstract Data Type (1)
	Some Applications of Data Structures
	DS Algorithm What is an Algorithm?

	Types of Algorithms
	Search Algorithm

	Linear Search
	Binary Search
	What is a Stack?
	Working of Stack
	Working of Stack (1)
	Standard Stack Operations

	PUSH operation
	Bubble sort Algorithm
	Algorithm
	Insertion Sort Algorithm
	Insertion sort has various advantages such as –

	Algorithm

	Array implementation of Stack
	Adding an element onto the stack (push operation)
	Algorithm:
	Implementation of push algorithm in C language
	Deletion of an element from a stack (Pop operation)

	Algorithm :
	Implementation of POP algorithm using C language

	C program
	Linked list
	Representation of a Linked list
	Why use linked list over array?
	How to declare a linked list?
	Types of Linked list
	Types of Linked list (1)
	Comparison Between

	Applications of Linked list
	Operations performed on Linked list
	Types of Linked List
	The following are the types of linked list:

	Singly Linked list
	Representation of the node in a doubly linked list

	Circular linked list
	Doubly Circular linked list
	Uses of Linked List
	Why use linked list over array? (1)
	Why use linked list over array? (2)
	Singly linked list or One way chain
	Singly linked list or One way chain (1)

